Optimal options pricing and trading: A new theory
نویسندگان
چکیده
منابع مشابه
Optimal stopping in Hilbert spaces and pricing of American options
We consider an optimal stopping problem for a Hilbert-space valued di usion. We prove that the value function of the problem is the unique viscosity solution of an obstacle problem for the associated parabolic partial di erential equation in the Hilbert space. The results are applied to investigate the pricing of American interest rate options in the lognormal Heath-Jarrow-Morton model of yield...
متن کاملOptimal Reflection of Diffusions and Barrier Options Pricing under Constraints
We introduce a new class of control problems in which the gain depends on the solution of a stochastic differential equation reflected at the boundary of a bounded domain, along directions which are controlled by a bounded variation process. We provide a PDE characterization of the associated value function. This study is motivated by applications in mathematical finance where such equations ar...
متن کاملEmployee Reload Options: Pricing, Hedging, and Optimal Exercise
Reload options, call options whose exercise entitles the holder to new options, are compound options that are commonly issued by firms to employees. Although reload options typically involve exercise at many dates, the optimal exercise policy is simple (always exercise when in the money) and surprisingly robust to assumptions about the employee’s ability to transact in the underlying stock as w...
متن کاملPricing American Options under Stochastic Volatility : A New Method Using
This paper presents a new numerical method for pricing American call options when the volatility of the price of the underlying stock is stochastic. By exploiting a log-linear relationship of the optimal exercise boundary with respect to volatility changes, we derive an integral representation of an American call price and the early exercise premium which holds under stochastic volatility. This...
متن کاملA new logistic-type model for pricing European options
We propose a family of models for the evolution of the price process [Formula: see text] of a financial market. We model share price and volatility using a two-dimensional system of stochastic differential equations (SDEs) driven by a single Wiener process. We prove that this family of models is well defined and that each model from this family is free of arbitrage opportunities, and it is (sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Derivatives & Hedge Funds
سال: 2011
ISSN: 1753-965X
DOI: 10.1057/jdhf.2011.19